Login
Search
Search
0 Dates
2025
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
CPC 2025
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
Anthracycline Chemotherapy: Impact on Cardiac Biomarkers and Fitness
Session:
SESSÃO DE POSTERS 11 - CARDIONCOLOGIA DE PONTA II
Speaker:
Margarida De Castro
Congress:
CPC 2025
Topic:
L. Cardiovascular Pharmacology
Theme:
31. Pharmacology and Pharmacotherapy
Subtheme:
31.5 Pharmacology and Pharmacotherapy - Other
Session Type:
Cartazes
FP Number:
---
Authors:
MARGARIDA DE CASTRO; Luísa Pinheiro; Mariana Tinoco; Emídio Mata; Tamara Pereira; Alexandra Teixeira; Gonçalo Torres; Geraldo Dias; Daniela Ferreira; Olga Azevedo; João Português; António Lourenço
Abstract
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Introduction: </span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Cancer therapy-related cardiac dysfunction (CTRCD) is a concern for Breast Cancer (BC) patients undergoing anthracycline chemotherapy (AC). CTRCD rely essentially on echocardiographic parameters. Alternative markers </span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">are being explored for their potential in early detection of CTRCD <span style="color:black">and prediction of impaired cardiorespiratory fitness (CRF) and heart failure (HF). Placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and myeloperoxidase (MPO) have shown to be increased after AC in BC patients, with higher PlGF and MPO levels correlating with risk of systolic dysfunction.</span></span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif"><span style="color:black"> Interleukin-6 (IL-6) and β2-microglobulin have been linked to cardiovascular outcomes.</span></span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Purpose:</span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif"> We aimed to explore the effects of AC on biomarkers in BC patients, and to assess their association with CRF impairment.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Methods</span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">: We conducted a </span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">prospective study including women with BC undergoing AC between </span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif"><span style="color:black">May 2022 and December 2023</span></span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">. </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Cardiopulmonary exercise test (CPET) a</span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">nd laboratory analyses were performed at 3 moments: before AC, 1-month and 6-months after completing AC. </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Functional disability (FD) was defined as a VO2peak ≤18.0mL/kg/min.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Results: </span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">We included 32 women. </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">FD increased from 9% pre-AC to 44% at 1-month and 53% at 6-months post-AC. </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Hemoglobin levels showed a significant drop at 1-month (p<0.001), with a slight recovery at 6-months (p=0.001). </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">High-sensitivity troponin significantly increased from 3.3±1.1 to 30.4±5.8 at 1 month (p<0.001) and recovered at 6-months, remaining higher than pre-AC levels (9.2±4.2, p<0.001). </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">NT-proBNP levels stayed unchanged. </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">β2-microglobulin, SFlt-1, and IL-6 showed a significant increase at 1-month and normalized at 6-months. PlGF significantly increased at 1-month and remained elevated at 6-months. </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:black">At 1-month, 44% (n=14) had FD. Patients with FD had </span></span></span></span><span style="font-size:10.0pt"><span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:black">higher IL-6 (</span></span></span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif"><span style="color:black">2.9±1.4 vs 1.7±1 pg/mL),<span style="background-color:white"> PlGF (</span>22.4±5.7 vs 16.3±3.3 pg/mL) and MPO (</span></span></span><span style="font-size:10.0pt"><span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:black">1.5±0.7 vs. 1±0.2) </span></span></span></span><span style="font-size:10.0pt"><span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:black">levels</span></span></span></span><span style="font-size:10.0pt"><span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:black">. </span></span></span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:black">At 6-months, 53% (n=17) had FD. Patients with FD had higher MPO (1.4±0.3 vs. 0.9±0.1) levels </span></span></span></span><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">than patients without <span style="background-color:white"><span style="color:black">FD. </span></span></span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.0pt"><span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:black">In univariate analysis with biomarkers, only MPO levels significantly influenced Vo2peak during follow-up (FU). </span></span></span></span></span></span></p> <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">Conclusion: </span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Times New Roman",serif">In our cohort, hsTnI and NT-proBNP levels were not linked to Vo2peak. <span style="color:black">Despite an increase in sFlt-1, IL-6, and β2-microglobulin levels at 1 month and PlGF levels at 1 and 6 months, none were associated with Vo2peak, suggesting they may detect cardiac injury early after AC but do not reflect CRF status. Although MPO did not show significant changes during FU in the overall population, patients with FD exhibited higher levels of MPO at 1 and 6 months, and MPO levels were associated with Vo2peak. Further research is required to confirm the utility of MPO level as a predictor of CRF.</span></span></span></span></span></p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site